113 research outputs found

    Virus assembly, allostery, and antivirals

    Get PDF
    Assembly of virus capsids and surface proteins must be regulated to ensure that the resulting complex is an infectious virion. In this review, we examine assembly of virus capsids, focusing on hepatitis B virus and bacteriophage MS2, and formation of glycoproteins in the alphaviruses. These systems are structurally and biochemically well-characterized and are simplest-case paradigms of self-assembly. Published data suggest that capsid and glycoprotein assembly is subject to allosteric regulation, that is regulation at the level of conformational change. The hypothesis that allostery is a common theme in viruses suggests that deregulation of capsid and glycoprotein assembly by small molecule effectors will be an attractive antiviral strategy, as has been demonstrated with hepatitis B virus

    Conformational changes in the Hepatitis B virus core protein are consistent with a role for allostery in virus assembly

    Get PDF
    In infected cells, virus components must be organized at the right place and time to ensure assembly of infectious virions. From a different perspective, assembly must be prevented until all components are available. Hypothetically, this can be achieved by allosterically controlling assembly. Consistent with this hypothesis, here we show that the structure of hepatitis B virus (HBV) core protein dimer, which can spontaneously self-assemble, is incompatible with capsid assembly. Systematic differences between core protein in dimer and capsid conformations demonstrate linkage between the intradimer interface and interdimer contact surface. These structures also provide explanations for the capsid-dimer selectivity of some antibodies and activity of assembly effectors. Solution studies suggest that the assembly-inactive state is more accurately an ensemble of conformations. Simulations show that allostery supports controlled assembly and results in capsids that are resistant to dissociation. We propose that allostery, as demonstrated in HBV, is common to most self-assembling viruses

    A Kinase Chaperones Hepatitis B Virus Capsid Assembly and Captures Capsid Dynamics in vitro

    Get PDF
    The C-terminal domain (CTD) of Hepatitis B virus (HBV) core protein is involved in regulating multiple stages of the HBV lifecycle. CTD phosphorylation correlates with pregenomic-RNA encapsidation during capsid assembly, reverse transcription, and viral transport, although the mechanisms remain unknown. In vitro, purified HBV core protein (Cp183) binds any RNA and assembles aggressively, independent of phosphorylation, to form empty and RNA-filled capsids. We hypothesize that there must be a chaperone that binds the CTD to prevent self-assembly and nonspecific RNA packaging. Here, we show that HBV capsid assembly is stalled by the Serine Arginine protein kinase (SRPK) binding to the CTD, and reactivated by subsequent phosphorylation. Using the SRPK to probe capsids, solution and structural studies showed that SRPK bound to capsid, though the CTD is sequestered on the capsid interior. This result indicates transient CTD externalization and suggests that capsid dynamics could be crucial for directing HBV intracellular trafficking. Our studies illustrate the stochastic nature of virus capsids and demonstrate the appropriation of a host protein by a virus for a non-canonical function

    Revealing in real-time a multistep assembly mechanism for SV40 virus-like particles

    Get PDF
    Many viruses use their genome as template for self-assembly into an infectious particle. However, this reaction remains elusive because of the transient nature of intermediate structures. To elucidate this process, optical tweezers and acoustic force spectroscopy are used to follow viral assembly in real time. Using Simian virus 40 (SV40) virus-like particles as model system, we reveal a multistep assembly mechanism. Initially, binding of VP1 pentamers to DNA leads to a significantly decreased persistence length. Moreover, the pentamers seem able to stabilize DNA loops. Next, formation of interpentamer interactions results in intermediate structures with reduced contour length. These structures stabilize into objects that permanently decrease the contour length to a degree consistent with DNA compaction in wild-type SV40. These data indicate that a multistep mechanism leads to fully assembled cross-linked SV40 particles. SV40 is studied as drug delivery system. Our insights can help optimize packaging of therapeutic agents in these particles

    Virus self-assembly proceeds through contact-rich energy minima

    Get PDF
    Self-assembly of supramolecular complexes such as viral capsids occurs prominently in nature. Nonetheless, the mechanisms underlying these processes remain poorly understood. Here, we uncover the assembly pathway of hepatitis B virus (HBV), applying fluorescence optical tweezers and high-speed atomic force microscopy. This allows tracking the assembly process in real time with single-molecule resolution. Our results identify a specific, contact-rich pentameric arrangement of HBV capsid proteins as a key on-path assembly intermediate and reveal the energy balance of the self-assembly process. Real-time nucleic acid packaging experiments show that a free energy change of ~1.4 k(B)T per condensed nucleotide is used to drive protein oligomerization. The finding that HBV assembly occurs via contact-rich energy minima has implications for our understanding of the assembly of HBV and other viruses and also for the development of new antiviral strategies and the rational design of self-assembling nanomaterials

    Viral Double-Strand RNA-Binding Proteins Can Enhance Innate Immune Signaling by Toll-Like Receptor 3

    Get PDF
    Toll-like Receptor 3 (TLR3) detects double-stranded (ds) RNAs to activate innate immune responses. While poly(I:C) is an excellent agonist for TLR3 in several cell lines and in human peripheral blood mononuclear cells, viral dsRNAs tend to be poor agonists, leading to the hypothesis that additional factor(s) are likely required to allow TLR3 to respond to viral dsRNAs. TLR3 signaling was examined in a lung epithelial cell line by quantifying cytokine production and in human embryonic kidney cells by quantifying luciferase reporter levels. Recombinant 1b hepatitis C virus polymerase was found to enhance TLR3 signaling in the lung epithelial BEAS-2B cells when added to the media along with either poly(I:C) or viral dsRNAs. The polymerase from the genotype 2a JFH-1 HCV was a poor enhancer of TLR3 signaling until it was mutated to favor a conformation that could bind better to a partially duplexed RNA. The 1b polymerase also co-localizes with TLR3 in endosomes. RNA-binding capsid proteins (CPs) from two positive-strand RNA viruses and the hepadenavirus hepatitis B virus (HBV) were also potent enhancers of TLR3 signaling by poly(I:C) or viral dsRNAs. A truncated version of the HBV CP that lacked an arginine-rich RNA-binding domain was unable to enhance TLR3 signaling. These results demonstrate that several viral RNA-binding proteins can enhance the dsRNA-dependent innate immune response initiated by TLR3

    Near infrared hyperspectral imaging for forensic analysis of document forgery

    Full text link
    [EN] Hyperspectral images in the near infrared range (HSI-NIR) were evaluated as a nondestructive method to detect fraud in documents. Three different types of typical forgeries were simulated by (a) obliterating text, (b) adding text and (c) approaching the crossing lines problem. The simulated samples were imaged in the range of 928 2524 nm with spectral and spatial resolutions of 6.3 nm and 10 mm, respectively. After data pre-processing, different chemometric techniques were evaluated for each type of forgery. Principal component analysis (PCA) was performed to elucidate the first two types of adulteration, (a) and (b). Moreover, Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) was used in an attempt to improve the results of the type (a) obliteration and type (b) adding text problems. Finally, MCR-ALS and Partial Least Squares Discriminant Analysis (PLS-DA), employed as a variable selection tool, were used to study the type (c) forgeries, i.e. crossing lines problem. Type (a) forgeries (obliterating text) were successfully identified in 43% of the samples using both the chemometric methods (PCA and MCR-ALS). Type (b) forgeries (adding text) were successfully identified in 82% of the samples using both the methods (PCA and MCR-ALS). Finally, type (c) forgeries (crossing lines) were successfully identified in 85% of the samples. The results demonstrate the potential of HSI-NIR associated with chemometric tools to support document forgery identificationINCTAA (Processes no. : CNPq 573894/2008-6; FAPESP 2008/57808-1), NUQAAPE, FACEPE, CNPq, CAPES, Spanish Ministry of Science and Innovation MICINN (grant DPI2011-28112-C04-02).Silva, CS.; Pimentel, MF.; Honorato, RS.; Pasquini, C.; Prats Montalbán, JM.; Ferrer Riquelme, AJ. (2014). Near infrared hyperspectral imaging for forensic analysis of document forgery. Analyst. 139(20):5176-5184. https://doi.org/10.1039/C4AN00961DS517651841392

    Structural and biophysical characterization of Nodamura virus

    No full text
    The correlation between virus structure and viral stability and assembly is poorly understood. The following studies were undertaken to gain insight into this relationship. The nodaviruses are a useful model system for studying virus structure and assembly because of their simple architecture and genome. They are assembled as a T = 3 provirion with 180 copies of coat protein and the bipartite RNA genome. Provirions mature by autoproteolytic cleavage of the coat protein. Maturation imparts stability to the capsid and is required for infectivity. The type member of the family, Nodamura virus (NOV), has a broader host range, including mammals and insects, and is less stable to denaturants and high salt than other nodaviruses. Monoclinic crystals of NOV contained four virus particles per unit cell, arranged with pseudo-rhombohedral symmetry. The pseudo symmetry generated novel difficulties in the structure determination. The 4.2 A resolution structure of NOV has several unique features. Most notable was weak density corresponding to 24 base pairs of ordered RNA extending \sim70 A in a groove between icosahedral threefold axes. The peptide in the groove, at the ends of the groove, has many interactions with ordered RNA; this sequence is more basic in NOV than in other nodaviruses. Other changes in the NOV structure include surface loops which correlate with differences in host range. A mechanism was proposed for autoproteolytic maturation in the nodavirus family. Aspartic acid 75, buried at the cleavage site during capsid assembly, activates the scissile bond by a mechanism which resembles general acid catalyzed hydrolysis; mutation of ASP75 prevents maturation. Analysis of cleavage kinetics suggests that maturation is driven by the instability of the provirion; the rate is proportional to the extent of cleavage. Capsid dissociation by urea was observed by turbidity and electron microscopy. Disassembly was an equilibrium process. A formalism developed to describe equilibrium assembly of polyhedral protein complexes allowed further analysis of these studies. The presence of disassembly intermediates, in some conditions, suggests that capsid assembly involves generation of intersubunit strain. Disruption of the capsid breaks some associative interactions between subunits but allows relaxation of this strain energy
    corecore